A Network-Based “Phenomics” Approach for Discovering Patient Subtypes From High-Throughput Cardiac Imaging Data

Jung Sun Cho, Sirish Shrestha, Nobuyuki Kagiyama, Lan Hu, Yasir Abdul Ghaffar, Grace Casaclang-Verzosa, Irfan Zeb, Partho P. Sengupta

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Objectives: The authors present a method that focuses on cohort matching algorithms for performing patient-to-patient comparisons along multiple echocardiographic parameters for predicting meaningful patient subgroups. Background: Recent efforts in collecting multiomics data open numerous opportunities for comprehensive integration of highly heterogenous data to classify a patient's cardiovascular state, eventually leading to tailored therapies. Methods: A total of 42 echocardiography features, including 2-dimensional and Doppler measurements, left ventricular (LV) and atrial speckle-tracking, and vector flow mapping data, were obtained in 297 patients. A similarity network was developed to delineate distinct patient phenotypes, and then neural network models were trained for discriminating the phenotypic presentations. Results: The patient similarity model identified 4 clusters (I to IV), with patients in each cluster showed distinctive clinical presentations based on American College of Cardiology/American Heart Association heart failure stage and the occurrence of short-term major adverse cardiac and cerebrovascular events. Compared with other clusters, cluster IV had a higher prevalence of stage C or D heart failure (78%; p < 0.001), New York Heart Association functional classes III or IV (61%; p < 0.001), and a higher incidence of major adverse cardiac and cerebrovascular events (p < 0.001). The neural network model showed robust prediction of patient clusters, with area under the receiver-operating characteristic curve ranging from 0.82 to 0.99 for the independent hold-out validation set. Conclusions: Automated computational methods for phenotyping can be an effective strategy to fuse multidimensional parameters of LV structure and function. It can identify distinct cardiac phenogroups in terms of clinical characteristics, cardiac structure and function, hemodynamics, and outcomes.

Original languageEnglish
Pages (from-to)1655-1670
Number of pages16
JournalJACC: Cardiovascular Imaging
Volume13
Issue number8
DOIs
StatePublished - Aug 2020

Bibliographical note

Publisher Copyright:
© 2020 American College of Cardiology Foundation

Keywords

  • deep phenotype
  • heart failure
  • high-dimensional echocardiographic parameters
  • topological data analysis

Fingerprint

Dive into the research topics of 'A Network-Based “Phenomics” Approach for Discovering Patient Subtypes From High-Throughput Cardiac Imaging Data'. Together they form a unique fingerprint.

Cite this