TY - JOUR
T1 - Autophagy in human skin fibroblasts
T2 - Impact of age
AU - Kim, Hei Sung
AU - Park, Seo Yeon
AU - Moon, Seok Hoon
AU - Lee, Jeong Deuk
AU - Kim, Sungjoo
N1 - Publisher Copyright:
© 2018 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2018/8/1
Y1 - 2018/8/1
N2 - Autophagy is an intracellular stress response that is enhanced under starvation conditions, and also when the cellular components are damaged. Aging accompanies an increase in intracellular stress and has significant impact on the skin. Since dermal fibroblasts are a powerful indicator of skin aging, we compared the autophagic activity of human skin fibroblasts between the young and old. According to TEM analyses, the number of autophagosomes per 1 µm2 cytoplasmic area was similar between young and aged fibroblasts. The amount of LC3 (microtubule-associated protein 1 light chain 3)-II, a form associated with autophagic vacuolar membranes, was also similar between the groups from Western blot analysis. Although residual bodies were more common in aged dermal fibroblasts, LC3 turnover and p62 assay showed little difference in the rate of lysosomal proteolysis between the young and old. RNA-seq analysis revealed that the major autophagy-modulating genes (BECN1, MAP1LC3B, ATG5, ATG7, ULK1, PIK3C3, mTOR) were not differentially expressed with age. Our results suggest that the basal autophagic flux in aged dermal fibroblasts is largely comparable to that of young fibroblasts. However, with a higher speed and amount of waste production in aged cells, we postulate that such autophagic flux may not be sufficient in keeping the old cells “clean”, resulting in skin aging. Aging is a complex process and, as such, the relationship between autophagy and aging is not straightforward. That is to say, autophagy does not simply decline with age. Regardless of the controversies on autophagic activity with age, autophagy plays a crucial role in counteracting aging, and strategies aimed at its modulation should hold promise for the prevention of skin aging.
AB - Autophagy is an intracellular stress response that is enhanced under starvation conditions, and also when the cellular components are damaged. Aging accompanies an increase in intracellular stress and has significant impact on the skin. Since dermal fibroblasts are a powerful indicator of skin aging, we compared the autophagic activity of human skin fibroblasts between the young and old. According to TEM analyses, the number of autophagosomes per 1 µm2 cytoplasmic area was similar between young and aged fibroblasts. The amount of LC3 (microtubule-associated protein 1 light chain 3)-II, a form associated with autophagic vacuolar membranes, was also similar between the groups from Western blot analysis. Although residual bodies were more common in aged dermal fibroblasts, LC3 turnover and p62 assay showed little difference in the rate of lysosomal proteolysis between the young and old. RNA-seq analysis revealed that the major autophagy-modulating genes (BECN1, MAP1LC3B, ATG5, ATG7, ULK1, PIK3C3, mTOR) were not differentially expressed with age. Our results suggest that the basal autophagic flux in aged dermal fibroblasts is largely comparable to that of young fibroblasts. However, with a higher speed and amount of waste production in aged cells, we postulate that such autophagic flux may not be sufficient in keeping the old cells “clean”, resulting in skin aging. Aging is a complex process and, as such, the relationship between autophagy and aging is not straightforward. That is to say, autophagy does not simply decline with age. Regardless of the controversies on autophagic activity with age, autophagy plays a crucial role in counteracting aging, and strategies aimed at its modulation should hold promise for the prevention of skin aging.
KW - Age
KW - Autophagy
KW - Genetic analysis
KW - Human skin fibroblasts
UR - http://www.scopus.com/inward/record.url?scp=85052094095&partnerID=8YFLogxK
U2 - 10.3390/ijms19082254
DO - 10.3390/ijms19082254
M3 - Article
C2 - 30071626
AN - SCOPUS:85052094095
SN - 1661-6596
VL - 19
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 8
M1 - 2254
ER -