Chondrogenic differentiation of mesenchymal stem cells embedded in a scaffold by long-term release of TGF-β3 complexed with chondroitin sulfate

Ji Sun Park, Hyun Jung Yang, Dae Gyun Woo, Han Na Yang, Kun Na, Keun Hong Park

Research output: Contribution to journalArticlepeer-review

53 Scopus citations

Abstract

In this study, mesenchymal stem cells (MSCs) embedded in biodegradable and water-swollen, elastic block copolymer scaffolds were assessed for MSC chondrogenesis. To determine the optimal conditions for chondrogenesis of the embedded rMSCs, transforming growth factor-β3 (TGF-β3) was physically conjugated with chondroitin sulfate (CS) and mixed into scaffolds, which were subsequently evaluated for the differentiation of transplanted rMSCs. In determination of CS-bound growth factors for chondrogenesis, scaffold mixed with rMSCs and TGF-β3 was then tested by growth factor release profiles, confocal laser microscopy, RT-PCR analysis, real time-QPCR, and histology. The results of several different analyses of the transplanted rMSCs embedded in the scaffolds showed that rMSCs coupled with a CS-bound TGF-β3 encapsulated scaffold evidenced superior cartilage tissue formation as measured by an assay of specific gene and protein expression. Moreover, the scaffold exhibited more rapid and more distinct morphology of differentiated rMSCs than was observed with other scaffolds, as determined by histology and immunochemical histology analysis. These results indicate that the elastic block copolymer scaffolds combined with a CS-bound TGF-β3 should prove very suitable matrix for cell-based cartilage tissue engineering.

Original languageEnglish
Pages (from-to)806-816
Number of pages11
JournalJournal of Biomedical Materials Research - Part A
Volume92
Issue number2
DOIs
StatePublished - Feb 2010

Keywords

  • Cartilage formation
  • Chondrogenesis
  • Elastic scaffold
  • MSC
  • TGF-β3

Fingerprint

Dive into the research topics of 'Chondrogenic differentiation of mesenchymal stem cells embedded in a scaffold by long-term release of TGF-β3 complexed with chondroitin sulfate'. Together they form a unique fingerprint.

Cite this