Chronic label-free volumetric photoacoustic microscopy of melanoma cells in scaffolds in vitro

Xin Cai, Yu Zhang, Chulhong Kim, Sung Wook Choi, Younan Xia, Lihong V. Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Visualizing cells in three-dimensional (3D) scaffolds has been one of the major challenges in tissue engineering. Current imaging modalities have limitations. Microscopy, including confocal microscopy, cannot penetrate deeply (> 300 μm) into the scaffolds; X-ray micro-computed tomography (micro-CT) requires staining of the structure with a toxic agent such as osmium tetroxide. Here, we demonstrate photoacoustic microscopy (PAM) of the spatial distribution and temporal proliferation of melanoma cells inside three-dimensionally porous scaffolds with thicknesses over 1 mm. Melanoma cells have a strong intrinsic contrast which is easily imaged by label-free PAM with high sensitivity. Spatial distributions of the cells in the scaffold were well-resolved in PAM images. Moreover, we chronically imaged the same cell/scaffold constructs at different time points over 2 weeks. The number of cells in the scaffold was quantitatively measured from the PAM volumetric information. The cell proliferation profile obtained from PAM correlated well with that obtained using the traditional 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. We believe that PAM will become a useful imaging modality for tissue engineering applications, especially when thick scaffold constructs are involved, and that this modality can also be extended to image other cell types labeled with contrast agents.

Original languageEnglish
Title of host publicationPhotons Plus Ultrasound
Subtitle of host publicationImaging and Sensing 2011
DOIs
StatePublished - 2011
EventPhotons Plus Ultrasound: Imaging and Sensing 2011 - San Francisco, CA, United States
Duration: 23 Jan 201125 Jan 2011

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume7899
ISSN (Print)1605-7422

Conference

ConferencePhotons Plus Ultrasound: Imaging and Sensing 2011
Country/TerritoryUnited States
CitySan Francisco, CA
Period23/01/1125/01/11

Keywords

  • Biomedical imaging
  • Inverse opal scaffolds
  • Melanoma
  • Photoacoustic microscopy
  • Tissue engineering

Fingerprint

Dive into the research topics of 'Chronic label-free volumetric photoacoustic microscopy of melanoma cells in scaffolds in vitro'. Together they form a unique fingerprint.

Cite this