Deep learning in negative small-bowel capsule endoscopy improves small-bowel lesion detection and diagnostic yield

Kyung Seok Choi, Do Gyeom Park, Jin Su Kim, Dae Young Cheung, Bo In Lee, Young Seok Cho, Jin Il Kim, Seungchul Lee, Han Hee Lee

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Objectives: Although several studies have shown the usefulness of artificial intelligence to identify abnormalities in small-bowel capsule endoscopy (SBCE) images, few studies have proven its actual clinical usefulness. Thus, the aim of this study was to examine whether meaningful findings could be obtained when negative SBCE videos were reanalyzed with a deep convolutional neural network (CNN) model. Methods: Clinical data of patients who received SBCE for suspected small-bowel bleeding at two academic hospitals between February 2018 and July 2020 were retrospectively collected. All SBCE videos read as negative were reanalyzed with the CNN algorithm developed in our previous study. Meaningful findings such as angioectasias and ulcers were finally decided after reviewing CNN-selected images by two gastroenterologists. Results: Among 202 SBCE videos, 103 (51.0%) were read as negative by humans. Meaningful findings were detected in 63 (61.2%) of these 103 videos after reanalyzing them with the CNN model. There were 79 red spots or angioectasias in 40 videos and 66 erosions or ulcers in 35 videos. After reanalysis, the diagnosis was changed for 10 (10.3%) patients who had initially negative SBCE results. During a mean follow-up of 16.5 months, rebleeding occurred in 19 (18.4%) patients. The rebleeding rate was 23.6% (13/55) for patients with meaningful findings and 16.1% (5/31) for patients without meaningful findings (P = 0.411). Conclusion: Our CNN algorithm detected meaningful findings in negative SBCE videos that were missed by humans. The use of deep CNN for SBCE image reading is expected to compensate for human error.

Original languageEnglish
Pages (from-to)437-445
Number of pages9
JournalDigestive Endoscopy
Volume36
Issue number4
DOIs
StatePublished - Apr 2024

Bibliographical note

Publisher Copyright:
© 2023 Japan Gastroenterological Endoscopy Society.

Keywords

  • artificial intelligence
  • capsule endoscopy
  • convolutional neural network
  • gastrointestinal hemorrhage

Fingerprint

Dive into the research topics of 'Deep learning in negative small-bowel capsule endoscopy improves small-bowel lesion detection and diagnostic yield'. Together they form a unique fingerprint.

Cite this