Enhancing Lymph Node Metastasis Risk Prediction in Early Gastric Cancer Through the Integration of Endoscopic Images and Real-World Data in a Multimodal AI Model

Donghoon Kang, Han Jo Jeon, Jie Hyun Kim, Sang Il Oh, Ye Seul Seong, Jae Young Jang, Jung Wook Kim, Joon Sung Kim, Seung Joo Nam, Chang Seok Bang, Hyuk Soon Choi

Research output: Contribution to journalArticlepeer-review

Abstract

Objectives: The accurate prediction of lymph node metastasis (LNM) and lymphovascular invasion (LVI) is crucial for determining treatment strategies for early gastric cancer (EGC). This study aimed to develop and validate a deep learning-based clinical decision support system (CDSS) to predict LNM including LVI in EGC using real-world data. Methods: A deep learning-based CDSS was developed by integrating endoscopic images, demographic data, biopsy pathology, and CT findings from the data of 2927 patients with EGC across five institutions. We compared a transformer-based model to an image-only (basic convolutional neural network (CNN)) model and a multimodal classification (CNN with random forest) model. Internal testing was conducted on 449 patients from the five institutions, and external validation was performed on 766 patients from two other institutions. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), probability density function, and clinical utility curve. Results: In the training, internal, and external validation cohorts, LNM/LVI was observed in 379 (12.95%), 49 (10.91%), 15 (9.09%), and 41 (6.82%) patients, respectively. The transformer-based model achieved an AUC of 0.9083, sensitivity of 85.71%, and specificity of 90.75%, outperforming the CNN (AUC 0.5937) and CNN with random forest (AUC 0.7548). High sensitivity and specificity were maintained in internal and external validations. The transformer model distinguished 91.8% of patients with LNM in the internal validation dataset, and 94.0% and 89.1% in the two different external datasets. Conclusions: We propose a deep learning-based CDSS for predicting LNM/LVI in EGC by integrating real-world data, potentially guiding treatment strategies in clinical settings.

Original languageEnglish
Article number869
JournalCancers
Volume17
Issue number5
DOIs
StatePublished - Mar 2025

Bibliographical note

Publisher Copyright:
© 2025 by the authors.

Keywords

  • artificial intelligence
  • clinical decision support system
  • lymph node metastasis
  • multimodal artificial intelligence
  • stomach cancer

Fingerprint

Dive into the research topics of 'Enhancing Lymph Node Metastasis Risk Prediction in Early Gastric Cancer Through the Integration of Endoscopic Images and Real-World Data in a Multimodal AI Model'. Together they form a unique fingerprint.

Cite this