Abstract
The real-time monitoring of specific guest release from nanoscale assemblies has been of great interest for the potential application in nanomedicine. Herein, we present a facile one-pot strategy to achieve a metal-chelated nanoscale platform that enables a highly efficient luminescence resonance energy transfer (LRET) for the monitoring of hydrophobic cargo release. To this end, Eu(III) as a lanthanide luminophore was employed to induce the metal-mediated self-assembly of chelating block copolymers in the presence of fluorescent Nile Blue (NB) as an organic cargo, which can then produce a nanoscale assembly containing a hybrid polyionic complex (HPIC) of Eu(III) and NB as LRET pairs. Exploiting this Eu(III)-chelated, NB-incorporated polymeric assembly as a luminescent platform that allows for the intermolecular distance-sensitive LRET, we further demonstrate that the facile monitoring of NB release from the carriers was made possible upon the addition of serum albumin as a protein reservoir for the released hydrophobic guest molecules.
Original language | English |
---|---|
Pages (from-to) | 1602-1608 |
Number of pages | 7 |
Journal | ACS Macro Letters |
Volume | 10 |
Issue number | 12 |
DOIs | |
State | Published - 21 Dec 2021 |
Bibliographical note
Publisher Copyright:© 2021 American Chemical Society