Abstract
The purpose of this study was to fabricate BMP-2-immobilized porous poly(lactide-co-glycolide) (PLGA) microspheres (PMS) modified with heparin for bone regeneration. A fluidic device was used to fabricate PMS and the fabricated PMS was modified with heparin-dopamine (Hep-DOPA). Bone morphogenic protein-2 (BMP-2) was immobilized on the heparinized PMS (Hep-PMS) via electrostatic interactions. Both PMS and modified PMS were characterized using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). MG-63 cell activity on PMS and modified PMS were assessed via alkaline phosphatase (ALP) activity, calcium deposition, and osteocalcin and osteopontin mRNA expression. Immobilized Hep-DOPA and BMP-2 on PMS were demonstrated by XPS analysis. BMP-2-immobilized Hep-PMS provided significantly higher ALP activity, calcium deposition, and osteocalcin and osteopontin mRNA expression compared to PMS alone. These results suggest that BMP-2-immobilized Hep-PMS effectively improves MG-63 cell activity. In conclusion, BMP-2-immobilized Hep-PMS can be used to effectively regenerate bone defects.
Original language | English |
---|---|
Pages (from-to) | 453-460 |
Number of pages | 8 |
Journal | Colloids and Surfaces B: Biointerfaces |
Volume | 134 |
DOIs | |
State | Published - 1 Oct 2015 |
Bibliographical note
Funding Information:This study was supported by a Korea University Grant K1300081 .
Publisher Copyright:
© 2015 Elsevier B.V.
Keywords
- Bone morphogenic protein-2 (BMP-2)
- Bone tissue engineering
- Fluidic device
- Heparin
- Porous microspheres