Abstract
Neural network models have achieved impressive results in the field of text classification. However, existing approaches often suffer from insufficient training data in a large-scale text classification involving a large number of categories (e.g., several thousands of categories). Several neural network models have utilized multi-task learning to overcome the limited amount of training data. However, these approaches are also limited to small-scale text classification. In this paper, we propose a novel neural network-based multi-task learning framework for large-scale text classification. To this end, we first treat the different scales of text classification (i.e., large and small numbers of categories) as multiple, related tasks. Then, we train the proposed neural network, which learns small- and large-scale text classification tasks simultaneously. In particular, we further enhance this multi-task learning architecture by using a gate mechanism, which controls the flow of features between the small- and large-scale text classification tasks. Experimental results clearly show that our proposed model improves the performance of the large-scale text classification task with the help of the small-scale text classification task. The proposed scheme exhibits significant improvements of as much as 14% and 5% in terms of micro-averaging and macro-averaging F1-score, respectively, over state-of-the-art techniques.
Original language | English |
---|---|
Title of host publication | The Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019 |
Publisher | Association for Computing Machinery, Inc |
Pages | 853-862 |
Number of pages | 10 |
ISBN (Electronic) | 9781450366748 |
DOIs | |
State | Published - 13 May 2019 |
Event | 2019 World Wide Web Conference, WWW 2019 - San Francisco, United States Duration: 13 May 2019 → 17 May 2019 |
Publication series
Name | The Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019 |
---|
Conference
Conference | 2019 World Wide Web Conference, WWW 2019 |
---|---|
Country/Territory | United States |
City | San Francisco |
Period | 13/05/19 → 17/05/19 |
Bibliographical note
Publisher Copyright:© 2019 IW3C2 (International World Wide Web Conference Committee), published under Creative Commons CC-BY 4.0 License.
Keywords
- Deep Neural Networks
- Large-scale Text Classification
- Multi-task Learning