Abstract
Adoptive transfer of γδ T cells is a novel immunotherapeutic approach to glioblastoma. Few recent studies have shown the efficacy of γδ T cells against glioblastoma, but no previous studies have identified the ligand–receptor interactions between γδ T cells and glioblastoma cells. Here, we identify those ligand–receptor interactions and provide a basis for using γδ T cells to treat glioblastoma. Vγ9Vδ2 T cells were generated from peripheral blood mononuclear cells of healthy donors using artificial antigen presenting cells. MICA, ULBP, PVR and Nectin-2 expression in 10 patient-derived glioblastoma (PDG) cells were analyzed. The in vitro cytokine secretion from the γδ T cells and their cytotoxicity toward the PDG cells were also analyzed. The in vivo anti-tumor effects were evaluated using a U87 orthotopic xenograft glioblastoma model. Expression of ligands and cytotoxicity of the γδ T cells varied among the PDG cells. IFN-γ and Granzyme B secretion levels were significantly higher when γδ Tcells were co-cultured with high-susceptible PDG cells than when they were co-cultured with low-susceptible PDG cells. Cytotoxicity correlated significantly with the expression levels of DNAM-1 ligands of the PDG cells. Blocking DNAM-1 resulted in a decrease in γδ T cell–mediated cytotoxicity and cytokine secretion. Intratumoral injection of γδ T cells showed anti-tumor effects in an orthotopic mouse model. Allogenic γδ T cells showed potent anti-tumor effects on glioblastoma in a DNAM-1 axis dependent manner. Our findings will facilitate the development of clinical strategies using γδ T cells for glioblastoma treatment.
Original language | English |
---|---|
Article number | 2138152 |
Journal | OncoImmunology |
Volume | 11 |
Issue number | 1 |
DOIs | |
State | Published - 2022 |
Bibliographical note
Funding Information:This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R1I1A1A01055575) and by the Research Fund of Seoul St. Mary’s Hospital, Catholic University of Korea (ZC21CISI0060). The funders have no role in this study.
Publisher Copyright:
© 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.
Keywords
- DNAM-1 receptor (CD266)
- Nectin-2
- PVR (CD-155)
- adoptive cell transfer
- glioblastoma
- Γδ T cells