TY - JOUR
T1 - Pretreatment MR-based radiomics in patients with glioblastoma
T2 - A systematic review and meta-analysis of prognostic endpoints
AU - Choi, Yangsean
AU - Jang, Jinhee
AU - Kim, Bum soo
AU - Ahn, Kook Jin
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/11
Y1 - 2023/11
N2 - Purpose: Recent studies have shown promise of MR-based radiomics in predicting the survival of patients with untreated glioblastoma. This study aimed to comprehensively collate evidence to assess the prognostic value of radiomics in glioblastoma. Methods: PubMed-MEDLINE, Embase, and Web of Science were searched to find original articles investigating the prognostic value of MR-based radiomics in glioblastoma published up to July 14, 2023. Concordance indexes (C-indexes) and Cox proportional hazards ratios (HRs) of overall survival (OS) and progression-free survival (PFS) were pooled via random-effects modeling. For studies aimed at classifying long-term and short-term PFS, a hierarchical regression model was used to calculate pooled sensitivity and specificity. Between-study heterogeneity was assessed using the Higgin inconsistency index (I2). Subgroup regression analysis was performed to find potential factors contributing to heterogeneity. Publication bias was assessed via funnel plots and the Egger test. Results: Among 1371 abstracts, 18 and 17 studies were included for qualitative and quantitative data synthesis, respectively. Respective pooled C-indexes and HRs for OS were 0.65 (95 % confidence interval [CI], 0.58–0.72) and 2.88 (95 % CI, 2.28–3.64), whereas those for PFS were 0.61 (95 % CI, 0.55–0.66) and 2.78 (95 % CI, 1.91–4.03). Among 4 studies that predicted short-term PFS, the pooled sensitivity and specificity were 0.77 (95 % CI, 0.58–0.89) and 0.60 (95 % CI, 0.45–0.73), respectively. There was a substantial between-study heterogeneity among studies with the survival endpoint of OS C-index (n = 9, I2 = 83.8 %). Publication bias was not observed overall. Conclusion: Pretreatment MR-based radiomics provided modest prognostic value in both OS and PFS in patients with glioblastoma.
AB - Purpose: Recent studies have shown promise of MR-based radiomics in predicting the survival of patients with untreated glioblastoma. This study aimed to comprehensively collate evidence to assess the prognostic value of radiomics in glioblastoma. Methods: PubMed-MEDLINE, Embase, and Web of Science were searched to find original articles investigating the prognostic value of MR-based radiomics in glioblastoma published up to July 14, 2023. Concordance indexes (C-indexes) and Cox proportional hazards ratios (HRs) of overall survival (OS) and progression-free survival (PFS) were pooled via random-effects modeling. For studies aimed at classifying long-term and short-term PFS, a hierarchical regression model was used to calculate pooled sensitivity and specificity. Between-study heterogeneity was assessed using the Higgin inconsistency index (I2). Subgroup regression analysis was performed to find potential factors contributing to heterogeneity. Publication bias was assessed via funnel plots and the Egger test. Results: Among 1371 abstracts, 18 and 17 studies were included for qualitative and quantitative data synthesis, respectively. Respective pooled C-indexes and HRs for OS were 0.65 (95 % confidence interval [CI], 0.58–0.72) and 2.88 (95 % CI, 2.28–3.64), whereas those for PFS were 0.61 (95 % CI, 0.55–0.66) and 2.78 (95 % CI, 1.91–4.03). Among 4 studies that predicted short-term PFS, the pooled sensitivity and specificity were 0.77 (95 % CI, 0.58–0.89) and 0.60 (95 % CI, 0.45–0.73), respectively. There was a substantial between-study heterogeneity among studies with the survival endpoint of OS C-index (n = 9, I2 = 83.8 %). Publication bias was not observed overall. Conclusion: Pretreatment MR-based radiomics provided modest prognostic value in both OS and PFS in patients with glioblastoma.
KW - Glioblastoma
KW - Machine learning
KW - Magnetic resonance imaging
KW - Meta-analysis
KW - Overall survival
KW - Progression-free survival
KW - Radiomics
UR - http://www.scopus.com/inward/record.url?scp=85173227498&partnerID=8YFLogxK
U2 - 10.1016/j.ejrad.2023.111130
DO - 10.1016/j.ejrad.2023.111130
M3 - Article
C2 - 37827087
AN - SCOPUS:85173227498
SN - 0720-048X
VL - 168
JO - European Journal of Radiology
JF - European Journal of Radiology
M1 - 111130
ER -