TY - JOUR
T1 - Role of mTORC2 in biphasic regulation of brown fat metabolism in response to mild and severe cold
AU - Allu, Prasanna K.R.
AU - Paulo, Esther
AU - Bertholet, Ambre M.
AU - Situ, Gavin
AU - Lee, Seung Hwan
AU - Wu, Yixuan
AU - Gleason, Catherine E.
AU - Saha, Bidisha
AU - Chawla, Ajay
AU - Wang, Biao
AU - Pearce, David
N1 - Publisher Copyright:
© 2021 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for Biochemistry and Molecular Biology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
PY - 2021/4/15
Y1 - 2021/4/15
N2 - Nonshivering thermogenesis is essential for mammals to maintain body temperature. According to the canonical view, temperature is sensed by cutaneous thermoreceptors and nerve impulses transmitted to the hypothalamus, which generates sympathetic signals to ß-adrenergic receptors in brown adipocytes. The energy for heat generation is primarily provided by the oxidation of fatty acids derived from triglyceride hydrolysis and cellular uptake. Fatty acids also activate the uncoupling protein, UCP1, which creates a proton leak that uncouples mitochondrial oxidative phosphorylation from ATP production, resulting in energy dissipation as heat. Recent evidence supports the idea that in response to mild cold, ß-adrenergic signals stimulate not only lipolysis and fatty acid oxidation, but also act through the mTORC2-Akt signaling module to stimulate de novo lipogenesis. This opposing anabolic effect is thought to maintain lipid fuel stores during increased catabolism. We show here, using brown fat-specific Gs-alpha knockout mice and cultured adipocytes that, unlike mild cold, severe cold directly cools brown fat and bypasses ß-adrenergic signaling to inhibit mTORC2. This cell-autonomous effect both inhibits lipogenesis and augments UCP1 expression to enhance thermogenesis. These findings suggest a novel mechanism for overriding ß-adrenergic-stimulated anabolic activities while augmenting catabolic activities to resolve the homeostatic crisis presented by severe cold.
AB - Nonshivering thermogenesis is essential for mammals to maintain body temperature. According to the canonical view, temperature is sensed by cutaneous thermoreceptors and nerve impulses transmitted to the hypothalamus, which generates sympathetic signals to ß-adrenergic receptors in brown adipocytes. The energy for heat generation is primarily provided by the oxidation of fatty acids derived from triglyceride hydrolysis and cellular uptake. Fatty acids also activate the uncoupling protein, UCP1, which creates a proton leak that uncouples mitochondrial oxidative phosphorylation from ATP production, resulting in energy dissipation as heat. Recent evidence supports the idea that in response to mild cold, ß-adrenergic signals stimulate not only lipolysis and fatty acid oxidation, but also act through the mTORC2-Akt signaling module to stimulate de novo lipogenesis. This opposing anabolic effect is thought to maintain lipid fuel stores during increased catabolism. We show here, using brown fat-specific Gs-alpha knockout mice and cultured adipocytes that, unlike mild cold, severe cold directly cools brown fat and bypasses ß-adrenergic signaling to inhibit mTORC2. This cell-autonomous effect both inhibits lipogenesis and augments UCP1 expression to enhance thermogenesis. These findings suggest a novel mechanism for overriding ß-adrenergic-stimulated anabolic activities while augmenting catabolic activities to resolve the homeostatic crisis presented by severe cold.
UR - http://www.scopus.com/inward/record.url?scp=85110996144&partnerID=8YFLogxK
U2 - 10.1016/J.JBC.2021.100632
DO - 10.1016/J.JBC.2021.100632
M3 - Article
C2 - 33865855
AN - SCOPUS:85110996144
SN - 0021-9258
VL - 296
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
M1 - 100632
ER -