Split-attention u-net: A fully convolutional network for robust multi-label segmentation from brain mri

Minho Lee, Jeeyoung Kim, Regina E.Y. Kim, Hyun Gi Kim, Se Won Oh, Min Kyoung Lee, Sheng Min Wang, Nak Young Kim, Dong Woo Kang, Zunhyan Rieu, Jung Hyun Yong, Donghyeon Kim, Hyun Kook Lim

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

Multi-label brain segmentation from brain magnetic resonance imaging (MRI) provides valuable structural information for most neurological analyses. Due to the complexity of the brain segmentation algorithm, it could delay the delivery of neuroimaging findings. Therefore, we introduce Split-Attention U-Net (SAU-Net), a convolutional neural network with skip pathways and a split-attention module that segments brain MRI scans. The proposed architecture employs split-attention blocks, skip pathways with pyramid levels, and evolving normalization layers. For efficient training, we performed pre-training and fine-tuning with the original and manually modified FreeSurfer labels, respectively. This learning strategy enables involvement of heterogeneous neuroimaging data in the training without the need for many manual annotations. Using nine evaluation datasets, we demonstrated that SAU-Net achieved better segmentation accuracy with better reliability that surpasses those of state-of-the-art methods. We believe that SAU-Net has excellent potential due to its robustness to neuroanatomical variability that would enable almost instantaneous access to accurate neuroimaging biomarkers and its swift processing runtime compared to other methods investigated.

Original languageEnglish
Article number974
Pages (from-to)1-22
Number of pages22
JournalBrain Sciences
Volume10
Issue number12
DOIs
StatePublished - Dec 2020

Bibliographical note

Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • Deep learning
  • Fine-tuning
  • Multi-label brain segmentation
  • SAU-Net
  • Split-attention block

Fingerprint

Dive into the research topics of 'Split-attention u-net: A fully convolutional network for robust multi-label segmentation from brain mri'. Together they form a unique fingerprint.

Cite this