TY - JOUR
T1 - Statistical Analysis of the Role of Cavity Flexibility in Thermostability of Proteins
AU - Hong, So Yeon
AU - Yoon, Jihyun
AU - An, Young Joo
AU - Lee, Siseon
AU - Cha, Haeng Geun
AU - Pandey, Ashutosh
AU - Yoo, Young Je
AU - Joo, Jeong Chan
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/1
Y1 - 2024/1
N2 - Conventional statistical investigations have primarily focused on the comparison of the simple one-dimensional characteristics of protein cavities, such as number, surface area, and volume. These studies have failed to discern the crucial distinctions in cavity properties between thermophilic and mesophilic proteins that contribute to protein thermostability. In this study, the significance of cavity properties, i.e., flexibility and location, in protein thermostability was investigated by comparing structural differences between homologous thermophilic and mesophilic proteins. Three dimensions of protein structure were categorized into three regions (core, boundary, and surface) and a comparative analysis of cavity properties using this structural index was conducted. The statistical analysis revealed that cavity flexibility is closely related to protein thermostability. The core cavities of thermophilic proteins were less flexible than those of mesophilic proteins (averaged B’ factor values, −0.6484 and −0.5111), which might be less deleterious to protein thermostability. Thermophilic proteins exhibited fewer cavities in the boundary and surface regions. Notably, cavities in mesophilic proteins, across all regions, exhibited greater flexibility than those in thermophilic proteins (>95% probability). The increased flexibility of cavities in the boundary and surface regions of mesophilic proteins, as opposed to thermophilic proteins, may compromise stability. Recent protein engineering investigations involving mesophilic xylanase and protease showed results consistent with the findings of this study, suggesting that the manipulation of flexible cavities in the surface region can enhance thermostability. Consequently, our findings suggest that a rational or computational approach to the design of flexible cavities in surface or boundary regions could serve as an effective strategy to enhance the thermostability of mesophilic proteins.
AB - Conventional statistical investigations have primarily focused on the comparison of the simple one-dimensional characteristics of protein cavities, such as number, surface area, and volume. These studies have failed to discern the crucial distinctions in cavity properties between thermophilic and mesophilic proteins that contribute to protein thermostability. In this study, the significance of cavity properties, i.e., flexibility and location, in protein thermostability was investigated by comparing structural differences between homologous thermophilic and mesophilic proteins. Three dimensions of protein structure were categorized into three regions (core, boundary, and surface) and a comparative analysis of cavity properties using this structural index was conducted. The statistical analysis revealed that cavity flexibility is closely related to protein thermostability. The core cavities of thermophilic proteins were less flexible than those of mesophilic proteins (averaged B’ factor values, −0.6484 and −0.5111), which might be less deleterious to protein thermostability. Thermophilic proteins exhibited fewer cavities in the boundary and surface regions. Notably, cavities in mesophilic proteins, across all regions, exhibited greater flexibility than those in thermophilic proteins (>95% probability). The increased flexibility of cavities in the boundary and surface regions of mesophilic proteins, as opposed to thermophilic proteins, may compromise stability. Recent protein engineering investigations involving mesophilic xylanase and protease showed results consistent with the findings of this study, suggesting that the manipulation of flexible cavities in the surface region can enhance thermostability. Consequently, our findings suggest that a rational or computational approach to the design of flexible cavities in surface or boundary regions could serve as an effective strategy to enhance the thermostability of mesophilic proteins.
KW - cavity
KW - flexibility
KW - mesophilic proteins
KW - protein thermostability
KW - statistical analysis
KW - thermophilic proteins
UR - http://www.scopus.com/inward/record.url?scp=85183320505&partnerID=8YFLogxK
U2 - 10.3390/polym16020291
DO - 10.3390/polym16020291
M3 - Article
AN - SCOPUS:85183320505
SN - 2073-4360
VL - 16
JO - Polymers
JF - Polymers
IS - 2
M1 - 291
ER -