TY - JOUR
T1 - Synthesis of New Multifunctional Linolenic Acid Vanillyl Ester and Investigation of Antioxidant and Antibacterial Activities
AU - Marvella, Jennifer Indra
AU - Kim, Hyung Kwoun
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
PY - 2024
Y1 - 2024
N2 - Vanillyl alcohol (VA) possesses potent antioxidant activity, yet its applicability is hindered by its limited solubility in emulsions or non-polar organic solvents. Conversely, long-chain polyunsaturated fatty acids exhibit antibacterial properties. The combination of these compounds offers the prospect of developing novel phenolic lipid compounds with dual antioxidant and antibacterial activities, alongside enhanced solubility capabilities. In this investigation, linolenic acid vanillyl ester (LAVE) was synthesized from VA and linseed oil (LO) through a transesterification reaction employing immobilized lipase. Optimization of LAVE production was achieved by varying reaction temperature, substrate concentration, and reaction time. LAVE demonstrated efficacy in scavenging both 2,2-diphenyl-1-picryhydrazyl and 2,2'-azino-bis (3-ethylbenthiazoline-6-sulphonic acid) radicals in organic solvents. Antioxidant testing via lipid oxidation analysis revealed that LAVE, when distributed within emulsions, effectively impeded the formation of conjugated dienes and conjugated trienes. Furthermore, LAVE exhibited antibacterial activity against four strains of spoilage bacteria: Bacillus subtilis, Bacillus coagulans, Pseudomonas fluorescens, and Alcaligenes faecalis. Zeta potential analysis substantiated the binding of LAVE to the bacterial cell surface. Propidium iodide uptake assay and fluorescence microscopy further elucidated that LAVE induces cell lysis by augmenting membrane permeability.
AB - Vanillyl alcohol (VA) possesses potent antioxidant activity, yet its applicability is hindered by its limited solubility in emulsions or non-polar organic solvents. Conversely, long-chain polyunsaturated fatty acids exhibit antibacterial properties. The combination of these compounds offers the prospect of developing novel phenolic lipid compounds with dual antioxidant and antibacterial activities, alongside enhanced solubility capabilities. In this investigation, linolenic acid vanillyl ester (LAVE) was synthesized from VA and linseed oil (LO) through a transesterification reaction employing immobilized lipase. Optimization of LAVE production was achieved by varying reaction temperature, substrate concentration, and reaction time. LAVE demonstrated efficacy in scavenging both 2,2-diphenyl-1-picryhydrazyl and 2,2'-azino-bis (3-ethylbenthiazoline-6-sulphonic acid) radicals in organic solvents. Antioxidant testing via lipid oxidation analysis revealed that LAVE, when distributed within emulsions, effectively impeded the formation of conjugated dienes and conjugated trienes. Furthermore, LAVE exhibited antibacterial activity against four strains of spoilage bacteria: Bacillus subtilis, Bacillus coagulans, Pseudomonas fluorescens, and Alcaligenes faecalis. Zeta potential analysis substantiated the binding of LAVE to the bacterial cell surface. Propidium iodide uptake assay and fluorescence microscopy further elucidated that LAVE induces cell lysis by augmenting membrane permeability.
KW - Antibacterial
KW - Antioxidant
KW - Linolenic acid vanillyl ester
KW - Lipase
KW - Transesterification
UR - http://www.scopus.com/inward/record.url?scp=85190846951&partnerID=8YFLogxK
U2 - 10.1007/s12010-024-04945-z
DO - 10.1007/s12010-024-04945-z
M3 - Article
AN - SCOPUS:85190846951
SN - 0273-2289
JO - Applied Biochemistry and Biotechnology
JF - Applied Biochemistry and Biotechnology
ER -