TY - JOUR
T1 - The effects of intraplantar and intrathecal botulinum toxin Type B on tactile allodynia in mono and polyneuropathy in the mouse
AU - Park, Hue Jung
AU - Marino, Marc J.
AU - Rondon, Eric S.
AU - Xu, Qinghao
AU - Yaksh, Tony L.
N1 - Publisher Copyright:
© 2015 International Anesthesia Research Society.
PY - 2015/7/4
Y1 - 2015/7/4
N2 - BACKGROUND: Mononeuropathies (MNs: nerve ligation) and polyneuropathies (PNs: cisplatin) produce unilateral and bilateral tactile allodynia, respectively. We examined the effects of intraplantar (IPLT) and intrathecal (IT) botulinum toxin B (BoNT-B) on this allodynia. METHODS: Mice (male c57Bl/6) were prepared with an L5 nerve ligation. Others received cisplatin (IP 2.3 mg/kg/d, every other day for 6 injections). Saline and BoNT-B were administered through the IPLT or IT route. We examined mechanical allodynia (von Frey hairs) before and at intervals after BoNT. As a control, we injected IPLT BoNT-B treated with dithiothreitol to cleave heavy chain from light chain. We measured motor function using acute thermal escape and sensorimotor tests. RESULTS: MN and PN mice showed a persistent ipsilateral and bilateral allodynia, respectively. IPLT BoNT-B resulted in an ipsilateral dorsal horn reduction in the synaptic protein target of BoNT-B (vesicle-associated membrane protein) and a long-lasting (up to approximately 17 days) reversal of allodynia in PN and MN models. The predominant effect after IPLT delivery was ipsilateral to IPLT BoNT. The effects of IPLT BoNT-B in MN mice were blocked by prior reduction of BoNT-B with dithiothreitol. IT BoNT-B in mice with PN resulted in a bilateral reversal of allodynia. With these dosing parameters, hind paw placing and stepping reflexes were unaltered, and there were no changes in thermal escape latencies. After cisplatin, dorsal root ganglions displayed increases in activation transcription factor 3, which were reduced by IT, but not IPLT BoNT-B. CONCLUSIONS: BoNT-B given IPLT and IT yields a long-lasting attenuation of the allodynia in mice displaying MN and PN allodynia.
AB - BACKGROUND: Mononeuropathies (MNs: nerve ligation) and polyneuropathies (PNs: cisplatin) produce unilateral and bilateral tactile allodynia, respectively. We examined the effects of intraplantar (IPLT) and intrathecal (IT) botulinum toxin B (BoNT-B) on this allodynia. METHODS: Mice (male c57Bl/6) were prepared with an L5 nerve ligation. Others received cisplatin (IP 2.3 mg/kg/d, every other day for 6 injections). Saline and BoNT-B were administered through the IPLT or IT route. We examined mechanical allodynia (von Frey hairs) before and at intervals after BoNT. As a control, we injected IPLT BoNT-B treated with dithiothreitol to cleave heavy chain from light chain. We measured motor function using acute thermal escape and sensorimotor tests. RESULTS: MN and PN mice showed a persistent ipsilateral and bilateral allodynia, respectively. IPLT BoNT-B resulted in an ipsilateral dorsal horn reduction in the synaptic protein target of BoNT-B (vesicle-associated membrane protein) and a long-lasting (up to approximately 17 days) reversal of allodynia in PN and MN models. The predominant effect after IPLT delivery was ipsilateral to IPLT BoNT. The effects of IPLT BoNT-B in MN mice were blocked by prior reduction of BoNT-B with dithiothreitol. IT BoNT-B in mice with PN resulted in a bilateral reversal of allodynia. With these dosing parameters, hind paw placing and stepping reflexes were unaltered, and there were no changes in thermal escape latencies. After cisplatin, dorsal root ganglions displayed increases in activation transcription factor 3, which were reduced by IT, but not IPLT BoNT-B. CONCLUSIONS: BoNT-B given IPLT and IT yields a long-lasting attenuation of the allodynia in mice displaying MN and PN allodynia.
UR - http://www.scopus.com/inward/record.url?scp=84942934106&partnerID=8YFLogxK
U2 - 10.1213/ANE.0000000000000777
DO - 10.1213/ANE.0000000000000777
M3 - Article
C2 - 26039418
AN - SCOPUS:84942934106
SN - 0003-2999
VL - 121
SP - 229
EP - 238
JO - Anesthesia and Analgesia
JF - Anesthesia and Analgesia
IS - 1
ER -