Abstract
In this study, integrin-mediated targeting and near-infrared fluorescence (NIRF) traceable polyethylene glycol-b-poly(lactic-co-glycolic acid) (PEG-PLGA)-based polymeric nanoparticles (NPs) were prepared to investigate the effects of paclitaxel (PTX) and curcumin (CUR) combination therapy on breast cancer. Cyclic (arginine-glycine-aspartic acid-phenylalanine-lysine) (cRGDfK) was selected as a ligand for breast cancer and conjugated to the end of NPs (cRGDfK-NPs). For fluorescence imaging, sulfo-cyanine 5.5 (Cy5.5) was incorporated into NPs (Cy5.5-NPs). A series of hybrid NPs consisting of NPs, cRGDfK-NPs, and Cy5.5-NPs with drugs encapsulated inside the core (Cy5.5-cRGDfK-NPs/PTX + CUR) were prepared by self-assembly. The efficacy of PTX and CUR combination and the ability of the integrin-mediated targeting of NPs were systemically investigated using a 4T1 mouse breast cancer cell line and a nude mouse xenograft model. We suggested that Cy5.5-cRGDfK-NPs/PTX + CUR has superior theranostic potential against breast carcinoma.
Original language | English |
---|---|
Pages (from-to) | 3750-3761 |
Number of pages | 12 |
Journal | Biomaterials Science |
Volume | 9 |
Issue number | 10 |
DOIs | |
State | Published - 21 May 2021 |
Bibliographical note
Funding Information:This research was supported by a grant from the Korean Ministry of Trade, Industry, and Energy (MOTIE, Grant No. 10047811).
Publisher Copyright:
© The Royal Society of Chemistry.