Abstract
Xanthine oxidoreductase (XOR) contributes to reactive oxygen species production. We investigated the cytoprotective mechanisms of XOR inhibition against high glucose (HG)-induced glomerular endothelial injury, which involves activation of the AMP-activated protein kinase (AMPK). Human glomerular endothelial cells (GECs) exposed to HG were subjected to febuxostat treatment for 48 h and the expressions of AMPK and its associated signaling pathways were evaluated. HG-treated GECs were increased xanthine oxidase/xanthine dehydrogenase levels and decreased intracellular AMP/ATP ratio, and these effects were reversed by febuxostat treatment. Febuxostat enhanced the phosphorylation of AMPK, the activation of peroxisome proliferator-activated receptor (PPAR)-gamma coactivator (PGC)-1α and PPAR-α and suppressed the phosphorylation of forkhead box O (FoxO)3a in HG-treated GECs. Febuxostat also decreased nicotinamide adenine dinucleotide phosphate oxidase (Nox)1, Nox2, and Nox4 expressions; enhanced superoxide dismutase activity; and decreased malondialdehyde levels in HG-treated GECs. The knockdown of AMPK inhibited PGC-1α–FoxO3a signaling and negated the antioxidant effects of febuxostat in HG-treated GECs. Despite febuxostat administration, the knockdown of hypoxanthine phosphoribosyl transferase 1 (HPRT1) also inhibited AMPK–PGC-1α–FoxO3a in HG-treated GECs. XOR inhibition alleviates oxidative stress by activating AMPK–PGC-1α–FoxO3a signaling through the HPRT1-dependent purine salvage pathway in GECs exposed to HG conditions.
Original language | English |
---|---|
Article number | 11167 |
Journal | Scientific Reports |
Volume | 14 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2024 |
Bibliographical note
Publisher Copyright:© The Author(s) 2024.
Keywords
- AMPK
- High glucose
- Oxidative stress
- Purine salvage pathway
- Xanthine oxidoreductase